QESST Engineering Research Center Overview

Christiana Honsberg, Director QESST ERC, Arizona State University

QESST Partners

International Partners

Imperial College London

ASU & Solar Power Laboratories

- Clean room 10/100/1000 with 40,000 sf of space for University- Industry collaboration.
- Solar Power Laboratories 5,000 sf
- Full wafer size pilot line; III-V growth; characterization; module fab
- 20 MW PV installations

Energy and Sustainable Solar Technologies

QESST Strategic Plan

Ensure that solar energy continues on a path of continuous cost and efficiency improvements to meet the Terawatt Challenge through development of technologies to harvest sustainable electricity, revitalization of STEM education, and reinvigoration of the US-based PV industry

Temperature keeps rising

- In the US, July 2012 was the hottest month on record.
- In the US, 2012 was the hottest year on record. http://www.nytimes.com/2013/01/09/science/earth/2012-was-hottest-year-everin-us.html
- Australia just started using a new color of purple as the temperatures are off the charts.

Motivation

- Quantum devices are a disruptive technology
- Thermodynamically, quantum energy conversion systems have different efficiencies, properties, and how implemented and used
- Broad goal is to exploit advantages of "quantum" energy conversion to address the Terawatt Challenge

Growth, learning curves and impact

- PV, like many other semiconductor or "quantum" based technologies has experienced rapid, sustained growth.
- Continued growth allows PV to have major impact on Terawatt Challenge

Sustained Growth of PV

- Promote growth by addressing experience curve barriers
- Growth rates historically driven by economies of scale

Engineered System

Research Themes & Projects

- Engineered system and three-plane diagram defines system, technologies, and issues
- Research themes represent areas of key competencies which allow QESST to make substantial advances

EXISTING SOLAR CELL TECHNOLOGY ROADMAP

NOT INTEGRATED

PROPOSED SOLAR CELL TECHNOLOGY ROADMAP

uantum

Energy and

Sustainable

Technologies

Solar

Silicon Solar Cells: Moore's Law Analog

- Higher efficiency and lower cost realized by thinner solar cells
- Diffused junctic barriers to higher efficienc photovoltaics
- Carrier selectiv get contacts allow thermodynamic efficiencies, simple process

32 0 30 28 26 10 24 22 100 500 20 18 16 10 100 1000 cell thickness (µm)

Existing and Target Silicon Solar Cells

	Area (cm ²)	V _{oc} (mV)	FF (%)	J _{sc} (mA/cm²)	Efficiency (%)
S-Q		875	87.1	43.8	33.4
UNSW	4	706	82.8	42.7	25.0
Panasonic	101.8	750	83.2	39.5	24.7
SunPower	155.1	721	82.9	40.5	24.2
ASU Target	100	785	83	42	27

Highest V_{oc} to date was achieved with carrier-selective contacts; concept can be pushed to the S-Q limit

Advanced light trapping will replace thick wafers

Silicon Single Junction Solar Cells

- Silicon solar cell path to 40%
 - Carrier selective contacts
 - -Auger limits
 - Hot carrier effects
 - Limited acceptance angle
 - Novel light trapping

Carrier-Selective Contacts

- Carrier-selective contacts enable ideal V_{oc}
- CSC approach comes from thermodynamic limits and detailed balance
- aSi/cSi is a close approximation to CSC

aSi/cSi Heterostructure

Distance in Microns from Top (logarithmic scale)

V_{oc} > 750 mV Heterostructure

- Surface recombination velocity of 2 cm /s on 50 µm thin wafer .
- J₀ of surfaces is 1-2 fA/cm^{2.}
- Completed solar cell with ITO on both sides

Transport at interface

- Transport at interface involves tunneling, transport over barrier, conventional drift diffusion
- Hot carrier transport aids transport over the barrier extracting 300 meV

Optical Approaches

 Angular control allows higher than accepted thermodynamic limits

Patterned silicon

Surface Control with SNS

Advanced Concepts in Si

 MEG with non-idealities in silicon

(b) TWO EHPs Generation

Potential Induced Degradation (PID)

Test condition

- -85 C/0% Rel. Humidity
- Negative bias (-600V)
- Duration: 56 hours

Baseline Process

 Implementation of a 'standard' screen print process that we can add on to for each user.

Line Development: Efficiency

Cell Efficiency from Pilot line

Central goals of QESST

- Simultaneously increase efficiency and reduce costs
 - Commercial solar cells at laboratory efficiencies: silicon, thin film
 - Increase commercial efficiencies to SQ limit
 - New approaches to higher efficiency modules and cells
 - Low cost tandems (Si-III-V, tandem thin films)
 - Low X spectral splitting
- Sustainability
- TW scale manufacturing; scalable, commercially compatible manufacturing
- Synergistic module approaches; integrated power electronics and optics
- Education training of workforce

QESST Interactions

Example QESST Interactions

Example QESST Interactions

Research Highlight

Exceeding Previous Limits for Doping of Gallium Nitride

- Demonstrated extremely high-hole concentrations in gallium nitride (GaN) and indium gallium nitride (InGaN),
- Work surpasses previously accepted limits to carrier concentration for this material system.
- More than 50% of the magnesium is active, compared to the 1-5% activation in traditional layers.

Resistivity as a function of temperature for ptype GaN films is shown in black prior to the current work and shows a 150x increase in resistivity due to carrier freeze-out as the temperature is decreased to 80K. The blue line shows the results from this current work where a high-hole concentration p type GaN film grown at Georgia Tech with the resistivity is relatively unchanged at lower temperatures.

Solar Decathlon

Education

- 19 Courses on PV and Sustainability
- www.pveducation.org
- Individual projects

Thank you.

